

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE STRUCTURE-R19

III Year – I SEMESTER		L	Т	P	C
		3	0	0	3
	LINEAR IC APPLICATIONS				

Preamble:

To understand the various possible applications of integrated circuits this course is proposed. To attend this course, it is assumed that all the students taking this course should have the basic electronic circuits' concepts. In the course content, basic characteristics required to use integrated circuits for various applications are included, followed by the linear and nonlinear applications of operational amplifiers. In addition, application of integrated circuits in filter design, modulators, analog multiplier, timer and phase locked loops applications. Application of integrated circuits for analog-to-digital and digital-to-analog conversion is also included.

Learning Objectives:

- To understand the basic operation &performance parameters of differential amplifiers.
- To understand & learn the measuring techniques of performance parameters of Op-Amp
- To learn the linear and non-linear applications of operational amplifiers.
- To understand the analysis & design of different types of active filters using Op-Amps
- To learn the internal structure, operation and applications of different analog ICs
- To Acquire skills required for designing and testing integrated circuits

UNIT I

Characteristics of OP-Amps:

Characteristics of OP-Amps, Integrated circuits-Types, Classification, Package Types and Temperature ranges, Power supplies, Op-Amp Block Diagram, ideal and practical Op-amp Specifications, DC and AC characteristics, 741 op-amp & its features, Op-Amp parameters & Measurement, Input & Out put Off set voltages & currents, slew rate, CMRR, PSRR, drift, Frequency Compensation techniques.

UNIT II

Linear And Non-Linear Applications Of Op-Amps:

Inverting and Non-inverting amplifier, Integrator and differentiator, Difference amplifier, Instrumentation amplifier, AC amplifier, V to I, I to V converters, Buffers. Non-Linear function generation, Comparators, Multivibrators, Triangular and Square wave generators, Log and Anti log Amplifiers, Precision rectifiers.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE STRUCTURE-R19

Active Filters, Analog Multipliers And Modulators:

Design & Analysis of Butterworth active filters – 1st order, 2nd order LPF, HPF filters. Band pass, Band reject and all pass filters.

Four Quadrant Multiplier, IC 1496, Sample & Hold circuits.

UNIT IV

Timers & Phase Locked Loops:

Introduction to 555 timer, functional diagram, Monostable and Astable operations and applications, Schmitt Trigger; PLL - introduction, block schematic, principles and description of

individual blocks, 565 PLL, Applications of PLL – frequency multiplication, frequency translation, AM, FM & FSK demodulators. Applications of VCO (566).

UNIT V

Digital To Analog And Analog To Digital Converters:

Introduction, basic DAC techniques, weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, and IC 1408 DAC, Different types of ADCs – parallel Comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC.DAC and ADC Specifications, Specifications AD 574 (12 bit ADC).

Learning Outcomes:

After the completion of the course the student should be able to:

- design circuits using operational amplifiers for various applications.
- analyze and design amplifiers and active filters using Op-amp.
- diagnose and trouble-shoot linear electronic circuits.
- understand the gain-bandwidth concept and frequency response of the amplifier configurations.
- understand thoroughly the operational amplifiers with linear integrated circuits.

Text Books:

- 1. Linear Integrated Circuits D. Roy Choudhury, New Age International (p) Ltd, 2nd Edition, 2003.
- 2. Op-Amps & Linear ICs Ramakanth A. Gayakwad, PHI,1987.
- 3. Operational Amplifiers-C.G. Clayton, Butterworth & Company Publ. Ltd./Elsevier, 1971

References Books:

- 1. Operational Amplifiers & Linear Integrated Circuits –Sanjay Sharma; SK Kataria &Sons; 2nd Edition, 2010
- 2. Design with Operational Amplifiers & Analog Integrated Circuits Sergio Franco, McGraw Hill. 1988.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

COURSE STRUCTURE-R19

- 3. OP AMPS and Linear Integrated Circuits concepts and Applications, James M Fiore, Cenage Learning India Ltd.
- 4. Operational Amplifiers & Linear Integrated Circuits–R.F.Coughlin & Fredrick Driscoll, PHI, 6th Edition.
- 5. Operational Amplifiers & Linear ICs David A Bell, Oxford Uni. Press, 3rd Edition